

Prioritized Technology: Instruments to Locate Regions of Habitability from Orbit/Flyby

Technical Goals

- Determine elemental composition of a planetary surface with < 10m*
 spatial resolution and identify minor components with < 1% abundance.
- Detect surface organic molecules on a planetary surface with < **10m** spatial resolution at less than 10% abundance.
- Determine ice thickness with 10% depth resolution over 100 × 100 m area on surface.
- * <10 m driven by desire to identify regions suitable for landing or sample collection remote sensing requirements depend on both instrumental performance and orbital/flyby parameters.

Technical Status/SOA

Elemental composition

- GRS/Mars Odyssey: spatial resolution ~120-300 km, Si, Fe, H, Cl, K, That precision 0.1-1%
- GRaND/Dawn: spatial resolution $^{\sim}160$ km (0.4*altitude), Fe and waterequivH with < 1% precision, K with 40 ppm precision, other eltsharder

Mineralogy/organics

- MISE/Europa Clipper: ≤ 25 m/px,%-level organics
- VIR/Dawn: 450 m/px,%-level organics and minerals

Ice thickness

REASON/Europa Clipper: 15-150 m/px

Mission Applications

- Identification of regions within Ocean Worlds where biogenic molecules may be present on the surface in order to identify promising landing site.
- Identification of regions within Ocean Worlds where the ice shell is thin enough to make penetrating to the subsurface ocean feasible.

Europa Clipper